Lecture 9: Vector Data Operations/Analysis

Geography 373
Fall, 2006

Contents of Lecture
- Topology
- GIS Database Errors
- Edge Matching
- Centroid
- Spatial Analysis
- Network Analysis
- Basic Operations
- Database & DBMS
- SQL

Topology
- Topology explicitly defines spatial relationships
- Creating and storing topological relationships has a number of advantages
 - Data is stored efficiently, so large data sets can be processed quickly
 - Topology facilitates analytical functions, such as
 - modeling flow through the connecting lines in a network
 - combining adjacent polygons with similar characteristics
 - identifying adjacent features
 - overlaying geographic features

GIS Database Errors
- Most GIS database errors result from improper input
 - Pushing wrong button on digitizing puck
 - Typing errors during attribute input
 - Problems with input documents
- Three types of error
 1. Entity error
 2. Attribute error
 3. Entity-attribute agreement error

GIS Database Errors
- Primary with vector data
 - e.g. missing entities, incorrectly place entities, disorder entities
- Positional errors
- Topological errors
 - Topology building detects obvious entity errors and allows to check if
 - All entities entered
 - No extra entities entered
 - Entities are in the right place and are correct shape and size
 - All polygons have a single label
 - All entities are within the boundary set

Topological Errors Editing
- Effect of tolerance on topological cleaning
- Topological ambiguities in raster to vector conversion
GIS Database Error

2. Attribute error
 - Difficult to detect
 - Why?
 - Raster
 - Easily detected by blank or very different grid cell value
 - Result from wrong input, typing errors
 - Vector
 - Can be detected by looking at attribute table for missing row
 - Result from forgetting to fill in attribute table

Edge Matching

- Working on more than one tile at a time to make sure there is a correct match between features that extend beyond the boundaries
- Occurs when two adjacent coverages are physically linked
- Projection is one of the main sources of difficulty to match

Centroid

- Point that occurs at exact geographic center of an area
- Involve complex calculations for complex polygons
- Centroids can also be used to signify different distributions
 - Geographic center (based on geometry)
 - Center of large county may not adequately reflect skewed population distribution
 - Mean center (center of gravity)
 - Reflects better where the population really is

Spatial Analysis

- Studying the locations and shapes of geographic features and the relationships between them
- Basics
 - What: nature of an entity by its attributes
 - Where: by geographical location or coordinates
 - Spatial relation: between different entities
 - Proximity, connectivity, adjacency, containment

Spatial Analysis

- Select based on attribute queries (i.e., zoning = "Multi-use")
- Select based on location (within a distance of, intersects, completely within, touching, not within, and many more)
- Create Buffers based on values or attributes
- Clip one data set using another data set
- Merge multiple data sets into a single data set
- Union multiple data sets into a single data set
- Join attributes of data sets together based on spatial relationships (Spatial Join)
- Utilize more than 90 tools in the geoprocessing framework in dialogs, models, and scripts
Network Analysis

- **Network:**
 - An interconnected set of lines representing geographic features such as roads, wires, pipes, or cables through which resources can be moved
 - Can be directed or undirected (one way vs. two way street)
 - Straight line: interstate highway
 - Braiding: stream network
 - Circuits: street patterns
- Any method of calculating locations and relationships in a network, usually in order to study or model connectivity, rate of flow, or capacity
 - Shortest route (path)
 - Optimal delivery route
 - Service area
 - Accessibility

Basic Operations

- **Attributes operations**
 - Query based
 - Logical conditions
 - Boolean logic: OR, AND, NOT
 - Mathematical: arithmetical
 - Location operations
 - Buffer based: “Create Buffer”
 - Find all the students within 0.1 mile of library?
 - Feature based: “Select by Feature”
 - Distance based
 - Find the closest hospital from MSU campus?
- **Topological operations**
 - Overlay based
 - Spatial join: merge, intersect, ...
 - Spatial relationship based
 - Direction: Find the road of right side of library?

Attribute Operations: Logical & Boolean

- **Logical conditions**
 - =, >, <, >=, <=, <>
- **Boolean logic**
 - AND
 - Intersection
 - OR
 - Union
 - NOT
 - Complement
 - Difference

Attribute Operations: Arithmetical

- **Arithmetical operation**
 - Population change in Blue Earth County
 - [population in year 2000] - [population in year 1990]
 - Wet land space in Blue Earth County
 - [lake] + [river] + [pond]
 - Population density in year 2000 in Blue Earth County
 - [population in year 2000] / [area]

Topological Operations: Overlay, Join

- **Layer 1:** land use
- **Layer 2:** land cover
- **Layer 3:** combined layer of Layer 1 & 2
 - Land use / cover information
- **Backward possible:** disjoin

Topological Operations: Merge

- **Important to identify possible spatial extend** for each function with respect to input and output
 - Union
 - Output extend may be bigger than input extends
 - Identity
 - Output extend is never bigger than input extends
 - Keep the input 1 extend
 - Intersect
 - Output extend is never bigger than input extends
 - May not keep the input extends
Spatial Join by Merge

Input 1, Input 2, Output

Database Management Systems

- DBMS
- Database: A collection of related data
- Computer program to create and maintain a database
- Advantages
 - Allows quick access to data
 - Allows edit data (add, delete, update)
 - Protects data from corruption
 - Storage and retrieval
 - Provide interface to data for users
 - Multiple users access
- GIS links attributes and spatial data

Database Model

- Relational model (RDBMS)
- Hierarchical model
- Network model
- Object-oriented model

RDBMS

- Relational Database Management System
- Collection of tables
 - Based on multiple flat files for records
 - Each table stored as a separate file
 - Data stored in simple records (tuples)
 - Tuples grouped together in two-dimensional tables: relations
- SQL
 - Structured Query Language
 - Rules define relationships between files
- Normalization
 - Reduces redundancy

RDBMS Components

- Tuples
 - Records
- Attributes
 - Fields
- Relations
 - Tables
- Primary Key: unique identifier
 - ID

Flat File Database

<table>
<thead>
<tr>
<th>Attribute 1</th>
<th>Attribute 2</th>
<th>Attribute 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record 1</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Record 2</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>Record 3</td>
<td>Value</td>
<td>Value</td>
</tr>
</tbody>
</table>
RDBMS

- Relation Schema
 - Student
 - Name, SSN, HomePhone, Address, OfficePhone, Age, GPA

RDBMS

- School database
 - Student
 - Course
 - Section
 - Grade_Report
 - Prerequisite

RDBMS

- In School database
 - Two entities

Structured Query Language (SQL)

- A syntax for defining and manipulating data in a relational database
- Developed by IBM in 1970s
- Became an industry standard for query language in most relational database management systems
- Query: a statement or logical expression used to select features or records from a database
 - Spatial query: selecting geographic features by where they are in relation to each other

SQL Query

- Standard interface to relational database
- Access data behind the map by "sort", "renumber", "subset", "search", etc.
- Select
 - Attribute list: a list of attribute names whose values are to be retrieved by the query
- From
 - Table list: a list of relation names required to process the query
- Where
 - Condition: a conditional boolean search expression that identifies the tuples to be retrieved by the query

SQL Query

- Retrieve the name and home phone number of the student whose GPA >= 3.5
 - Select: Name, HomePhone
 - From: STUDENT
 - Where: GPA >= 3.5
- Query Result
 - Dick Davidson, num
 - Charles Cooper, 376-9821
Hierarchical Database

USA
 - California
 - Minnesota
 - Mankato
 - Minneapolis
 - Ohio
 - St. Cloud

Homework

- Read Chapters 3, 4, 9, 19