Lecture 9: Raster Data Operations/Analysis

Geography 373
Fall, 2006

Contents of Lecture
- Map Algebra

Raster or Vector
- While most GIS systems can handle raster, vector data, only one is used for the internal organization of spatial data

Raster Data
- Represent reality through selected surfaces arranged in a regular pattern
 - Uniform, regular cells: rectangular, triangular
- Each cell (pixel) is identified by row and column
 - Geometric resolution depends on cell size
- Raster data model uses a grid
 - One grid cell is one unit holding one attribute
 - Every cell has a value: missing, n.a.
 - Cell contains either number or letter (index)

Raster Data
- Best for continuous data
- No complex data structure
- Embedded spatial relationships
 - Adjacency
 - Connectivity
- Overlay operation
 - Arithmetic: +, -, *, /

Raster Data Value Encode
- Nominal data
 - Tree species, soil type, parcel owner names
- Ordinal data
 - Class with poor, moderate, good order
- Interval data
 - Temperature
- Ratio data
 - Precipitation, income
Raster Data Type
- Satellite imagery
- Digital Elevation Model (DEM)
- Digital Orthophoto Quads (DOQ)
- Digital Raster Graphics (DRG)
- Binary scanned files
- Graphic files

Image Pixel
- Derived from picture element
- Tiny square that represents the smallest elements into which a digital image is divided
- Numerical value to each pixel
 - 0-255
- DPI
 - Dot per inch

LANSAT TM Image
- TM band 2 – visible green
- TM band 4 – near IR

LANSAT 7 ETM 30 m

IKONOS 4 m

Description of Raster Grid
- Green = 19/48
Map Overlay

Local Operator

- At the same location
- Input and Output
 - The output value at each location is a function of the value associated with one or more grids at that location
 - The value of the single cell has a direct influence of the value of the output
 - A per-cell function can be applied on a single grid or on multiple grids
- e.g.
 - Single grid: trigonometric, exponential, logarithmic
 - Multiple grids: minimum, maximum, majority, minority value

Map Algebra

- A language specifically designed for geographic cell-based systems
- The algebra maintains the power of the mathematical base underlying the cell-based structure
- Developed by C. Dana Tomlin
- 3 types of operations
 1. Local operators: work on single cells
 2. Focal operators: work on cells within a neighborhood
 3. Zonal operators: work on cells within zones

Local Operator

- Assignment
 - Assign new values to cells
- Reclassify
 - Change specific values or ranges of values
- Recode
 - Change measurement scales
 - Use only one input layer
 - Binary masking: Letter → 1, 0
 - Classification ranking: number → index
- Overlay
 - Use multiple input layers
 - Boolean operations
 - AND, OR

Recode
Focal Operator

- Within a neighborhood
- Input and Output
 - The output value at each location is a function of the input value at that location and values of the cells in a specified neighborhood around the location
 - A neighborhood configuration determines which cells surrounding the processing cell should be used in the calculation of each output value
 - Nearness, window
 - e.g.
 - mean, standard deviation, sum within immediate or extended neighborhoods

Focal Operator

- Neighborhood types
 - Rectangle
 - Circle
 - Doughnut
 - Wedge
 - Irregular

Focal Operator

Input grid

Output grid

Zonal Operator

- Input and Output
 - The output value at each location depends on the value of the cell at that location and the association that location has within a cartographic zone
 - Similar to focal functions
 - except that the definition of the neighborhood in a zonal function is the configurations of the zones or features of the input zone grid
 - Not a specified neighborhood shape
 - e.g.
 - mean, standard deviation, sum from the first layer that falls within a specified zone of the second

Zonal Operator
Comparison of Vector vs. Raster based data Analysis

- Same Operations can be used for both data, but cannot run them together.
 - distance measure operation, overlay, buffering, and map manipulation for both data
- Differences existing between them

<table>
<thead>
<tr>
<th>Vector</th>
<th>Raster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create point, line, and polygon.</td>
<td>Create points, lines, and polygons. Combine geometries, and create more complex geometries and spatial analysis.</td>
</tr>
<tr>
<td>Create spatial relationship, such as overlap.</td>
<td>Create spatial relationships, such as overlap, proximity, and spatial relationships.</td>
</tr>
<tr>
<td>Create buffer zones.</td>
<td>Create buffer zones. Use vector processing for creating buffer zones.</td>
</tr>
<tr>
<td>Create continuous distance measure.</td>
<td>Create continuous distance measure. Use raster processing for creating distance measures.</td>
</tr>
<tr>
<td>Create overlay.</td>
<td>Create overlay. Combine geometries and attributes, compute intersection and union.</td>
</tr>
<tr>
<td>Create new geometries, such as intersect and union.</td>
<td>Create new geometries, such as intersect and union.</td>
</tr>
<tr>
<td>Create attributes, such as area and extent.</td>
<td>Create attributes, such as area and extent.</td>
</tr>
</tbody>
</table>

Homework

- Read Chapter 13